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Abstract
To effectively use automated zoom lenses for machine vision we need camera

models that are valid over continuous ranges of lens settings. While camera calibration
has been the subject of much research in machine vision and photogrammetry, for the
most part the resulting models and calibration techniques have been for cameras with
fixed parameter lenses where the lens’ imaging process is static. For cameras with
automated lenses the image formation process is a dynamic function of the lens control
parameters. The complex nature of the relationships between the control parameters
and the imaging process plus the need to calibrate them over a continuum of lens
settings makes both the modeling and the calibration of cameras with automated zoom
lenses fundamentally more difficult than that of cameras with fixed parameter lenses.

In this paper we illustrate some of the problems involved with the modeling and
calibration of cameras with variable parameter lenses. We then show how an iterative,
empirical approach to modeling and calibration can produce a dynamic camera model
of perspective projection that holds calibration across a continuous range of zoom.

1 Introduction
Camera systems with automated zoom lenses are inherently more useful than those

with fixed parameter lenses. With a variable parameter lens a camera can adapt to
changes or differences in the scenes being imaged, focus attention on specific objects in
view that differ in size and location, or even measure properties of the scene by noting
how the image changes as the lens’ parameters are varied. But, to effectively use
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zoom lenses for machine vision we need camera models that are valid over continuous
ranges of lens settings.

1.1 Fixed vs Variable Parameter Lenses
In modeling and calibrating automated zoom lenses our end objective is to capture

the net relationship between the lens control parameters and some aspect of the image
formation process. Conceptually this relationship can be subdivided into two parts, as
illustrated in Fig. 1. The first part, R1, is the relationship between the image formation
process and hardware configuration of the lens. The hardware configuration is specified
by the composition, dimensions and positions of the optical components of the lens.
The second part, R2, is between the hardware configuration of the lens and lens’
control parameters (if any). In fixed parameter camera systems the lens’ hardware
configuration is static and we need to consider only R1 in the modeling and calibration
of the lens. In variable parameter camera systems the lens’ hardware configuration is
dynamic and we must consider both R1 and R2.

R1 - Hardware Configuration and the Image Formation Process
For real lenses the low level optics relating the lens’ hardware configuration to the

actual image formation process is generally too complex to be expressed in closed-form
equations, even for a simple fixed parameter camera lens. Lens designers deal with
this by resorting to simulations of the image formation process using ray tracing [1]. In
ray tracing the paths of individual light rays are traced as they refract at each optical
surface in the lens. With enough rays the designer can characterize the lens’ image
formation process sufficiently to evaluate the lens’ design. While the equations used in
ray tracing are explicitly related to the hardware configuration of the lens, they cannot
be used to build parameterized models of the imaging properties that we are interested
in.

In machine vision we are interested in higher level aggregate properties of the
image formation process. These range from simple image properties such as magnifi-
cation and focussed distance, to more complex image properties such as perspective
projection and amount of image defocus. In order to have computationally efficient
closed-form equations for these properties the models must necessarily be based on
simplifications or abstractions of the actual image formation process. The two most
common abstract models are the pinhole camera model and the thin-lens camera
model, used respectively to explain perspective projection and image defocus.

R2 - Control Parameters and the Hardware Configuration
In lenses the relationship between the lens’ control parameters and the actual

hardware configuration of the lens is essentially an arbitrary design choice made by
the manufacturer. Typically the relationship is hidden from the user. Worse still,
the mechanical nature of this relationship introduces several difficult modeling and
calibration problems. To illustrate these problems we can look at the position of the
image of a laser (initially autocollimated at one specific lens setting to determine the
optical axis) as the focus and zoom of a precision automated zoom lens are varied.
In Fig. 2 we can see significant hysteresis in the position of the laser’s image as
the focus control is varied from 1.0 m to 1 and back to 1.0 m. Figure 3 shows both
hysteresis and a sharp discontinuity in the laser’s position as the zoom control is
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Figure 2: Hysteresis in position of laser’s
image during focusing

varied from 130 mm to 10 mm. In both these examples the automation for the lens
is provided by highly repeatable digital microstepping motors (see Section 2), thus
the error is due primarily to the internal mechanical and optical properties of the lens.
Notwithstanding mechanical hysteresis and discontinuities, with precise automation
and control the hardware configuration of the lens can be made to be very repeatable
and thus calibratable. Figure 4 shows the repeatability of the position of the laser’s
image as the focus is varied twice from 1.0 m to 1.

1.2 Modeling Variable Parameter Lenses

For fixed parameter lenses the image formation process is static and thus the terms
in our camera models are constants. In variable parameter lenses the image formation
process is a dynamic function of the lens control parameters, and thus the terms of our
camera models must also be variable. The question is, How do the terms vary with
the control parameters? This is a difficult question to answer for two reasons. First,
the two traditional models of the image formation process, the pinhole camera and the
thin-lens, are idealized high level abstractions of the real image formation process and
the connection between the lens’ physical configuration and the model terms is not
direct. Second, as we’ve seen the relationship between the lens’ physical configuration
and the control parameters is complex and typically unknown. The answer to the
question then is that we have no good theoretical basis for the relationships between
the terms of our camera models and the lens control parameters. Every model term is
potentially a function of every lens control parameter [5]. The actual relationships must
be determined empirically.

The most direct method of discovering the relationships between the model terms
and the lens control parameters would be to step the lens through the full range of
its control parameters while performing a full calibration of the camera model at each
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Figure 3: Discontinuity and hysteresis in
position of laser’s image during zooming
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Figure 4: Repeatability of position of
laser’s image over focus

step1. The drawback with this method is the amount of computational effort required to
determine all of the model terms at every lens setting.

While every model term is potentially a function of every lens control parameter, in
reality the dependencies between the model terms and the control parameters range
from strong, to weak, to none at all. By taking advantage of the fact that some model
terms remain relatively constant over ranges of the lens control parameters we can
greatly reduce the effort required to determine the variation in the remaining model
terms.

1.3 Calibrating Variable Parameter Lenses
Unlike the calibration of fixed parameter lenses, the calibration of variable parameter

lenses requires that measurements be made over ranges of hardware configurations
for the lens. This raises several challenges. First, the dimensionality of the data is
the same as the number of control parameters that are to be concurrently modeled.
Ten measurements across the range of each of the focus, zoom and aperture controls
gives us 1000 hardware configurations to calibrate for, compared to just one for a fixed
parameter lens system.

A second challenge is the potential difficulty in taking measurements across the wide
range of imaging situations that can occur over the range of some control parameters.
As an example, consider the measurement of features on a calibration target as the
zoom is varied. As the lens is zoomed in (i.e. the focal length is increased) the
number of feature points in the camera’s field of view may decrease below the number
necessary to perform an accurate calibration. Conversely, as the lens is zoomed out
the features on the target may become too small and/or crowded to be accurately
measured. In the end, several targets with different scales may be required to cover

1This was the approach used by Wiley [4] on a manually adjusted lens.



Willson/Shafer

the full range of zoom. Taking measurements over wide ranges of focus and defocus
can also be problematic.

When collecting the calibration data the sampling interval(s) depend on the rate of
variation of the model terms with each control parameter. An initial sparse sampling
along with full camera calibration can be used to identify the rate and degree of variation
of all of the model terms with respect to a given control parameter. Slowly varying or non
varying terms can then be modeled and calibrated using the sparse calibration data.
Where terms vary rapidly, denser calibration data is taken. Using this approach the
computation required to model and calibrate the more rapidly varying terms is reduced
by already having models (and thus values) for the more slowly varying terms.

2 A Perspective Projection Camera Model for Zoom Lenses

In this section we use the above techniques to develop a perspective projection
camera model that “holds calibration” across a continuous range of the zoom control
parameter. By “holds calibration” we mean that the average magnitude of the error in
the image plane between the calibrated camera model and calibration data remains
essentially constant across the desired range of zoom.

The camera system for this work consists of a Fujinon A13�10BRM-8 zoom lens
mounted on a Photometrics Star 1 digital camera. Automation for the lens is provided
by digital microstepping motors which are connected to the lens body by backlash-free
pushrod and pulley assemblies [5]. The microstepping motors provide repeatable drift
free positioning of the lens hardware, even across powerdowns. The lens has 5100
steps of resolution for focus, 11100 steps for zoom, and 2700 steps for aperture.

The calibration target is a white plane containing 3.2 mm diameter black dots on
regular 12.7 mm grid. The target is mounted parallel to the camera’s sensor plane on
a linear positioner who’s axis is parallel to the camera’s optical axis.

The calibration data that we use to develop our camera model was taken over 31
lens settings, from zoom motor (mz) positions 1800 to 2100 in 10 unit steps. At each
lens setting images of the calibration target were taken at ranges of 2800 mm, 2550 mm
and 2300 mm between the target plane and the camera’s sensor plane. Each image
contained between 272 and 460 control points, depending on the zoom setting and on
the range to the target.

2.1 The Static Camera Model

To model the image formation process for any given lens setting we use the 11 term
pinhole camera model described in Tsai [3]. As illustrated in Fig. 5, the origin of the
camera-centered coordinate system (xc; yc; zc) coincides with the front nodal point of
the camera and the zc axis coincides with the camera’s optical axis. The image plane
is assumed to be parallel to the (xc; yc) plane at a distance f from the origin, where f

is the effective focal length of the camera.
The relationship of between the position of a pointP in world coordinates, (xw; yw; zw),

and the point’s image in the camera’s frame buffer, (Xf ; Yf ), is defined by a sequence
of coordinate transformations. The first is a rigid body transformation from the world
coordinate system (xw; yw; zw) to the camera-centered coordinate system (xc; yc; zc).
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Figure 5: Camera model geometry
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is the 3� 3 rotation matrix describing the orientation of the camera in the world coordi-
nate system.

The second transformation is a perspective projection (using an ideal pinhole cam-
era model) of the point in camera coordinates to the position of its image in undistorted
sensor plane coordinates, (Xu; Yu). This is described by

Xu = f
xc

zc
and Yu = f

yc

zc
(2)

where f is the effective focal length of the pinhole camera.
The third transformation is from the undistorted (ideal) position of the point’s image

in the sensor plane to the true position of the point’s image, (Xd; Yd), that results from
geometric lens distortion. This is described by

Xu = Xd(1 + �1�
2); Yu = Yd(1 + �1�

2) and � =
q
X2

d + Y 2
d

where �1 is the coefficient of radial lens distortion. While a more complex model
describing both radial and tangential geometric lens distortion could have been used,
the accuracy provided by this model is sufficient to demonstrate the development of
our zoom lens model.

The final transformation in the static camera model is between the true position of
the point’s image on the sensor plane and its coordinates in the camera’s frame buffer,
(Xf ; Yf ). This is described by

Xf = d�1
x Xdsx + Cx and Yf = d�1

y Yd + Cy

where Cx and Cy are the coordinates (in pixels) of the intersection of the zc axis and the
camera’s sensor plane, dx and dy are the effective center to center distances between
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the camera’s sensor elements in the xc and yc directions, and sx is a scaling factor to
compensate for any uncertainty in the ratio between the number of sensor elements on
the CCD and the number of pixels in the camera in the x direction.

2.2 Iterative Development of the Dynamic Camera Model

We start the development of the dynamic camera model by first fully calibrating the
static camera model at one zoom position (mz = 1800). The full calibration is done
using Tsai’s algorithm [3] to generate an initial set of values for the model’s 11 terms
followed by a general non-linear optimization to further refine them.

From the static camera model we can see that the primary effect of the lens’ zoom
control will be on the focal length term, f . Starting from the base set of constants
obtained at mz = 1800, we estimate f from the calibration data for mz = 1810 . . . 2100.
Figure 6 shows f versusmz. If we look at the average magnitude of the image plane er-
ror between the model and the calibration data (top curve in Fig. 7) we see that it climbs
by an order of magnitude across the chosen range of zoom motor settings. Clearly
not all of the dependencies between the model terms and mz have been captured by
allowing just the f term of the model to vary.

A second order effect of changing the zoom is a shifting of the camera’s field of
view due to changes in the optical alignment of the lens components [6]. In the camera
model this shifting of the field of view can be accommodated by letting Cx and Cy vary
with mz. Starting again from the base set of constants at mz = 1800, this time we
estimate f , Cx and Cy from the calibration data for mz = 1810 . . . 2100. Figures 8 and
9 show Cx and Cy versus mz. Looking again at the mean image plane error (middle
curve in Fig. 7) this time we see that it climbs by only a factor of two across the range
of zoom motor settings. While this represents a significant improvement over the first
attempt, clearly there are more dependencies between the model terms and mz.

Another second order effect of changing zoom is a shifting of the position of the
camera’s nodal points due to the repositioning of lens components along the optical
axis [2]. In the camera model this shifting is equivalent to a change in the position
of the origin in the camera’s coordinate frame along the camera’s z axis, and can be
accommodated by allowing the model’s Tz term to vary with mz. Starting again from
the base set of constants at mz = 1800, this time we estimate f , Cx, Cy and Tz from
the calibration data for mz = 1810 . . . 2100. Figure 10 shows Tz versus mz. Looking at
the mean image plane error between the model and the calibration data (bottom curve
in Fig. 7) we see that this time the error is relatively flat across the range of zoom motor
settings.

To get an idea of how well the above camera model is holding calibration we
perform a full static camera calibration on the calibration data from each lens setting
(mz = 1800 . . . 2100). This gives us the minimum mean image plane error possible for
this set of calibration data for each given mz. The results indicate that by modeling just
four of the 11 camera model terms as functions of the zoom control parameter we can
hold the mean image plane error to within 1.5 % of the best error obtainable for the
full 11 term static camera calibration across this range of the zoom parameter (if the
full static camera calibration error were plotted in Fig. 7 it would completely overlay the
bottom curve).



Willson/Shafer

94.00

95.00

96.00

97.00

98.00

99.00

100.00

101.00

102.00

103.00

104.00

105.00

1850 1900 1950 2000 2050 2100
Zoom position [motor units]

1800

base
f 

 [
m

m
]

Figure 6: f versus zoom motor
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2.3 Efficient Estimation of f , Cx, Cy and Tz Model Terms
In the previous section we showed that with variations in only four of the 11 model

terms our camera model could hold calibration across a continuous range of the zoom
motor. Allowing only the f , Cx, Cy and Tz terms to vary also permits a special reformu-
lation of the equations that makes calibration easier. Figure 11 shows a 2D illustration
of the camera’s imaging geometry when the f , Cx, Cy and Tz terms are allowed to vary.
At the base lens setting the points P1 and P2 have images Q1b and Q2b on the sensor
plane located at a focal length of fb from the camera’s origin. When mz is changed the
effective focal length changes from fb to f , the image center shifts perpendicular to the
zc axis from Cxb to Cx and the camera origin shifts along the zc axis by �Tz, causing
the images of the two points move to positions Q1 and Q2. Using simple geometry the
relationship between Cx and Cxb (and similarly between Cy and Cyb) is

Cx = Q1 � (Q1b � Cxb)
jQ1 �Q2j

jQ1b �Q2bj

.
For the new lens setting equations (1) and (2) give us

Xui
= f

xci
zci

= f
r1xwi

+ r2ywi
+ r3zwi

+ Tx

r7xwi
+ r8ywi

+ r9zwi
+ Tz

= f
xci

Kzi + Tz

for every point Pi, where Kzi = r7xwi
+ r8ywi

+ r9zwi
. Rearranging terms we get

fxci � TzXui
= KziXui

where xci , Xui
and Kzi can be directly calculated for all points Pi using the calibration

data from the new lens setting plus the values of Cx and Cy obtained above. To find
f and Tz for the new lens setting we simply solve the over determined set of linear
equations 2

66666664

xci �Xui

...
...

yci �Yui

...
...

3
77777775
"
f

Tz

#
=

2
66666664

KziXui

...

KziYui

...

3
77777775
:

For the solution of this system to exist the calibration data cannot all lie in a single plane
parallel to the sensor plane. Note that the solution to this system is an f and Tz that
minimizes the error for the projection of the calibration data along the camera’s z axis.
Ideally we would like to minimize the squared error for the projection of the calibration
data in the camera’s xy image plane, as is done in most full camera calibration ap-
proaches. The advantage of the above approach is that it is direct rather than iterative.
A less efficient but more consistent approach to estimating f , Cx, Cy and Tz is to use
the values of the constant terms from the base lens setting in an iterative non-linear
optimization for the four variable terms.

The final dynamic camera model for the given range of zoom consists of four variable
terms (f;Cx;Cy; Tz), and seven constant terms (Rx; Ry;Rz ; Tx; Ty; �1; sx). Extending the
model to a wider range of zoom positions would likely require modeling variations in
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additional model terms (e.g. �1). To extend the camera model to additional control
parameters (e.g. focus and aperture), the dimensionality of the calibration data would
have to be increased. In addition, the dimensionality of any functions used to fit or to
interpolate the values of the variable terms will also have to be increased.

3 Conclusions
The complex nature of the relationships between the control parameters and the

imaging process plus the volume of calibration data and the range of conditions over
which it must be taken combine to make the modeling and the calibration of cameras
with automated zoom lenses fundamentally more difficult than that of cameras with
fixed parameter lenses. To discover the degree of dependency between the terms
of conventional models of the imaging process (such as the pinhole camera model)
and the lens control parameters we need an iterative, empirical approach to modeling
and calibration. The wide range of these dependencies can be exploited to reduce
the amount of computation required to develop the model. With this approach we can
efficiently produce a dynamic camera model that holds calibration across continuous
ranges of control parameters.
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